Electric Potential and Capacitance Formulas- Physics Formula

1. Electric Potential Difference
  Scalar quantity
     `V_A-V_B=\frac{W_{ext_{B\rightarrow A}}}{q_o}`

2. Electric Potential at a Point
     `V_A=\frac{W_{ext_{\infty\rightarrow A}}}{q_0}`

3. Potential due to a Point charge
     `V=\frac Q{4\pi\varepsilon_0R}=\frac{KQ}R`

4. Potential due to a uniformly charges ring
At axial Point
     `V_{AP}=\frac{KQ}{\sqrt{R^2+x^2}}`

At centre
     `V_{centre}=\frac{KQ}R`

5. Potential due to Electric dipole
At Axial point
     `V_{ax}=\frac{KP}{x^2}`

At Perpendicular bisector Or Equatorial point
     `V_{eq}=0`

At General Point
     `V_x=\frac{KP\cos\theta}{x^2}`

6. Relation between Fields and Potential
"Potential always decreases in direction of field"
     `\|\triangle V\|=E.\triangle r`

7.    `E=-\frac{\partial V}{\partial x}\hat i+\left(-\frac{\partial V}{\partial y}\right)\hat j+\left(-\frac{\partial V}{\partial z}\right)\hat k`

8. Potential due to a Hollow [Conducting And Non-Conducting] and Solid Conducting Sphere
     `V_{inside}=V_{surf}=\frac{KQ}R`

     `V_{out}=\frac{KQ}r`

Where R = Radius of Sphere
And r= distance from centre of sphere

9. Potential due to solid Non-Conducting sphere[Dielectric/Insulated]
Inside (x<R) 
     `V_i=\frac{KQ\(3R^2-x^2\)}{2R^3}`

Centre
     `V_c=\frac{3KQ}{2R}`

Surface
     `V_s=\frac{KQ}R`

Outside sphere (x>R) 
     `V_o=\frac{KQ}r`

10. Earthing
Connect any conductor to earth 
     `V_{cond}=0`
Charge need not to be zero. 

11. Electrostatic energy (U) 
     `U=\frac{KQ_1Q_2}r`
 
     Number of Pairs =n(n-1) /2

     `U_f-U_i=W_{ext}=-W_{cons}`

12. Potential energy of an Electric Dipole in uniform Electric Field. 
     `U_\theta=-PE\cos\theta`

     `W_{ext}=U_f-U_i=PE(cos\theta_1-\cos\theta_2)`

`theta`=90° , U=0 , `tau`=PE (maximum) 
`theta`=0° , U=-PE (minimum), `tau`=0 (stable equilibrium) 
`theta`=180° , U=+PE (maximum), `tau`=0 (unstable equilibrium) 

13. Capacitor 
     `C=\frac qV`
     Unit = Farad 

C is independent of q and V. 
It depends on dimension of conductor and property of medium. 

14. Spherical Conductor
     `C=4\pi\varepsilon_0R`

15. Energy stored
     `U=\frac{CV^2}2=\frac{q^2}{2C}`

16. Cylindrical Capacitor
     `C=\frac{2\pi\varepsilon_0l}{\ln\{\frac{R_2}{R_1}}\}`

17. Parallel Plate Capacitor
     `C=\frac{\varepsilon_0A}d`

Force on one plate due to other plate
     `F=\frac{Q^2}{2A\varepsilon_0}`

18. Combination of Capacitor
Series combination
     `\frac1{C_{eq}}=\frac1{C_1}+\frac1{C_2}+..`

Parallel Combination
     `C_{eq}=C_1+C_2+..`

19. Dielectric in a Capacitor (K) 
     `C'=KC_0`

     `E'=\frac{E_0}K`

     `V'=\frac{V_0}K`

`C=\frac{\varepsilon_0A}{{\frac{t_1}{K_1}}+{\frac{d-t}{K_2}}}`

20. Circuit with Capacitor and Resistor
At t= 0, 
     Replace Capacitor ➡ straight wire
At t= infinite (steady state) 
     Replace Capacitor with broken wire. 

21. Energy Density 
     `E_d=\frac U{Volume}=\frac U{Ad}=\frac{\varepsilon_0E^2}2`

22. Charging of Capacitor
Growth of current
     `Q=Q_0(1-e^{-\frac t\tau})`

     `i=i_0e^{-\frac t\tau}`

Where `tau`= time constant = RC

23. Discharging of Capacitor
Decay of current
     `q=q_0e^{-\frac t\tau}`

     `i=i_0e^{-\frac t\tau}`

Similar posts