Wave optics Formulas- Physics Formulas

Wave Optics Formulas

Wave optics Formulas- Physics Formulas | Educateify
1. Constructive Interference
  Resultant Amplitude 
     `a_R=a_1+a_2`
 Phase Difference
     `theta`= 0, 2π, 4π,.....(2nπ) 
     where n=0, 1, 2, 3, 4,.....
 Path Difference
     x= 0, `\lambda,2\lambda,3\lambda,.......n\lambda`
  Where n=0, 1, 2, 3,....
 Resultant Intensity 
     `I_{max}=\left(a_1+a_2\right)^2\=\(\sqrt{I_1}+\sqrt{I_2})^2`
     `I_{max}=I_1+I_2+2\sqrt{I_1I_2}`

2. Destructive Interference
 Resultant Amplitude
     `a_R=a_1-a_2`
 Phase difference
     `theta`=π, 3π, 5π,......(2n-1) π
     where n=1, 2,3,......
 Path difference
     `x=\frac\lambda2,\frac{2\lambda}2,\.......(2n-1)\frac\lambda2`
 Resultant Intensity
    `I_{min}=(a_1-a_2)^2=(\sqrt{I_1}-\sqrt{I_2})^2`

3. When sources are coherent
    `\frac{I_{max}}{I_{min}}=\frac{{(a+b)}^2}{{(a-b)}^2}=\frac{{(\sqrt{I_1}+\sqrt{I_2}\)}^2}{{(\sqrt{I_1}-\sqrt{I_2})}^2}`

4. Young's Double slit experiment
  Bright Fringe
     `x=n\frac{\lambda D}d`
  Dark Fringe
     `x=\left(\frac{2n-1}2\right)\frac{\lambda D}d`
  Fringe width
     `\beta=\frac{\lambda D}d`

5. Single slit experiment
 Angular Position of nth secondary minima
     `\theta_n=\frac{n\lambda}a`
 Angular Position of nth secondary maxima
     `(\theta^')_n=\frac{(2n-1)\lambda}{2a}`
 Angular width of central maxima
     `\theta_c=\frac{2\lambda}a`
 Angular width of secondary maximum and minimum
     `\theta=\frac\lambda a`

6. Brewster's Law
     `\mu=\tan i_p`

7. Law of Malus
      `I=I_0\cos^2\theta`

8. Resolving power of telescope
     `R.P.=\frac1{d\theta}=\frac D{1.22\lambda}`

Similar posts